1. — On réalise un bobinage en enroulant sur un tronc de cône, jointivement suivant la génératrice, N spires d'un fil de cuivre de diamètre a et de résistivité ρ . Le tronc de cône de sommet S, de demi-angle au sommet α , est caractérisé par les rayons r_1 et $r_2 > r_1$ de ses deux bases.

Chaque spire est repérée par sa cote z qui mesure la distance qui sépare son centre de S. On désigne par r le rayon de la spire située à

Exprimer le nombre N de spires qui constituent le bobinage en fonction de r_1, r_2, a et α .

a)
$$N = \frac{r_2 - r_1}{a\cos\alpha}$$

b)
$$N = \frac{r_2 - r_1}{a \tan \alpha}$$

c)
$$N = \frac{r_2 + r_1}{2a\cos\alpha}$$

$$d) N = \frac{r_2 - r_1}{a \sin \alpha}$$

2. — On désigne par dN le nombre de spires dont la cote est comprise entre z et z + dz. On considère que ces dN spires ont la même circonférence et qu'elles créent le même champ magnétique. Exprimer dN.

a)
$$dN = \frac{dz}{a\cos\alpha}$$

b)
$$dN = \frac{dz}{a \sin \alpha}$$

c)
$$dN = \frac{dz}{a \tan \alpha}$$

$$d) dN = \frac{dz}{2a\sin\alpha}$$

3. — La résistance R d'un fil de résistivité ρ , de section s et de longueur ℓ est donnée par la relation :

 $R = \rho \ell / s$. Calculer R.

a)
$$R = \rho \frac{r_2^2 - r_1^2}{a^3 \cos \alpha}$$

b)
$$R = 4\rho \frac{r_2^2 - r_1^2}{a^3 \sin \alpha}$$
 c) $R = 2\rho \frac{r_2^2 - r_1^2}{a^3 \tan \alpha}$ d) $R = \rho \frac{r_2^2 + r_1^2}{2a^3 \cos \alpha}$

c)
$$R = 2\rho \frac{r_2^2 - r_1^2}{a^3 \tan \alpha}$$

d)
$$R = \rho \frac{r_2^2 + r_1^2}{2a^3 \cos \alpha}$$

 α

z

 r_1

 r_2

4. — Le bobinage est parcouru par un courant I dans le sens représenté sur la figure ci-dessus. On désigne par μ_0 la perméabilité du vide. Calculer le champ magnétique B_1 créé en S par une spire de rayon r.

a)
$$\vec{B}_1 = \frac{\mu_0 I}{2r} \sin^3 \alpha \vec{e}_z$$
 b) $\vec{B}_1 = \frac{\mu_0 I}{r} \sin^3 \alpha \vec{e}_z$ c) $\vec{B}_1 = \frac{\mu_0 I}{2\pi r} \sin^3 \alpha \vec{e}_z$ d) $\vec{B}_1 = \frac{\mu_0 I}{4\pi r} \sin^3 \alpha \vec{e}_z$

b)
$$\vec{B}_1 = \frac{\mu_0 I}{r} \sin^3 \alpha \vec{e}_z$$

c)
$$\vec{B}_1 = \frac{\mu_0 I}{2\pi r} \sin^3 \alpha \vec{e}_1$$

d)
$$\vec{B}_1 = \frac{\mu_0 I}{4\pi m} \sin^3 \alpha \vec{e}_z$$

5. — En déduire le champ magnétique créé en S par la totalité du bobinage

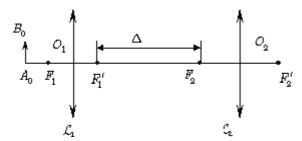
a)
$$\vec{B} = \frac{\mu_0 I \sin^3 \alpha}{2\pi a} \ln \frac{r_2 - r_1}{r_2 + r_1} \vec{e}_z$$

b)
$$\vec{B} = \frac{\mu_0 I \sin^3 \alpha}{2\pi (r_2 - r_1)} \ln \frac{r_2}{r_1} \vec{e}_z$$

c)
$$\vec{B} = \frac{\mu_0 I \sin^3 \alpha}{2a} \ln \frac{r_2}{r_1} \vec{e}_z$$

d)
$$\vec{B} = \frac{\mu_0 I \sin^2 \alpha}{4\pi (r_2 + r_1)} \ln \frac{r_2}{r_1} \vec{e}_z$$

ENAC pilotes 2000



6. — Un microscope est constitué d'un objectif et d'un oculaire que l'on peut assimiler à deux lentilles minces convergentes \mathcal{L}_1 et \mathcal{L}_2 . Le foyer image F_1' de \mathcal{L}_1 et le foyer objet F_2 de \mathcal{L}_2 sont séparés par une distance $\Delta = 16$ cm. L'objectif \mathcal{L}_1 a une distance focale image $f_1'=4\,\mathrm{mm}$. Un observateur dont l'œil est normal et accommode à l'infini, regarde un objet A_0B_0 à travers l'instrument (cf. figure). Calculer, dans ces conditions, la distance $d_0 = O_1A_0$ de l'objet au centre optique de $\mathcal{L}_{\!\scriptscriptstyle 1}$ pour qu'une image nette se forme sur la rétine.

a)
$$d_0 = -3.5 \,\text{mm}$$

b)
$$d_0 = -4.1 \,\text{mm}$$

c)
$$d_0 = -5,2 \,\text{mm}$$

d)
$$d_0 = -7.3 \,\text{mm}$$

7. — Calculer le grandissement transversal γ_{ob} de l'objectif.

a)
$$\gamma_{ab} = -40$$

b)
$$\gamma_{ob} = -30$$

c)
$$\gamma_{ob} = -20$$

d)
$$\gamma_{ab} = -25$$

8. — On désigne par $d_m = 25$ cm la distance minimale de vision distincte d'un oeil normal. On définit le grossisse-

ment commercial G d'un instrument optique par le rapport $G = \frac{\alpha_i}{\alpha}$, où α_i est l'angle sous lequel un oeil normal

accommodant à l'infini voit l'objet à travers l'instrument et a_o l'angle sous lequel l'objet est vu à l'œil nu lorsqu'il est placé à la distance minimale de vision distincte.

Déterminer le grossissement commercial G_{oc} de l'oculaire en fonction de f_2' et d_m .

a)
$$G_{oc} = -\frac{d_m - f_2'}{f_2'}$$
 b) $G_{oc} = \frac{d_m + f_2'}{f_2'}$ c) $G_{oc} = \frac{d_m}{d_m + f_2'}$ d) $G_{oc} = \frac{d_m}{f_2'}$

b)
$$G_{oc} = \frac{d_m + f_2}{f_2'}$$

c)
$$G_{oc} = \frac{d_m}{d_m + f_2'}$$

$$d) G_{oc} = \frac{d_m}{f_2'}$$

9. — Sachant que le grossissement commercial de l'oculaire vaut G_{oc} = 10, calculer le grossissement commercial G_m du microscope.

a)
$$G_m = -2000$$

b)
$$G_m = -300$$

c)
$$G_m = -200$$

d)
$$G_m = -400$$

10. — On définit la puissance P du microscope par le rapport $P = \alpha_i / \overline{A_0 B_0}$ de la dimension angulaire α_i de l'objet vu à travers l'instrument par un oeil normal accommodant à l'infini sur la dimension réelle A_0B_0 de cet objet. Calculer P.

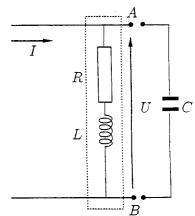
a)
$$P = 3000 \, \delta$$

b)
$$P = 1600 \, \delta$$

c)
$$P = 1000 \, \delta$$

d)
$$P = 500 \, \delta$$

11. — Un moteur $\mathcal M$ équivalent à un résistor de résistance R associé en série avec une bobine de coefficient d'auto-inductance L est alimenté en courant alternatif sinusoïdal de fréquence 50 Hz par un fil de résistance négligeable (cf. figure ci-contre). Le moteur consomme une puissance moyenne $P_M=4,4\,\mathrm{kW}$ et son facteur de puissance est égal à 0,6. On mesure entre ses bornes A et B une tension de valeur efficace $U=220\,\mathrm{V}$.



Calculer le courant efficace *I* circulant dans la ligne.

a) I = 12.5A

b) I = 27.2 A

c) I = 42.6 A

- d) I = 33.3 A
- 12. Calculer *R*.
- a) $R = 4 \Omega$

b) $R = 8 \Omega$

c) $R = 2 \Omega$

- d) $R = 12 \Omega$
- 13. Calculer *L*.
- a) L = 7 mH b) L = 12 mH
- c) L = 17 mH
- d) L = 52 mH
- 14. Pour relever le facteur de puissance de l'installation, on connecte entre les bornes A et B un condensateur de capacité C. La tension mesurée aux bornes du moteur a toujours la valeur U = 220 V.

Calculer la plus petite valeur de C pour que le nouveau facteur de puissance soit égal à 0, 9.

- a) $C = 246 \,\mu\text{F}$
- b) $C = 354 \,\mu\text{F}$
- c) $C = 192 \,\mu\text{F}$
- d) $C = 53 \, \mu F$

15. — Calculer la puissance moyenne $P_{\scriptscriptstyle M}^{\prime}$ absorbée par le moteur.

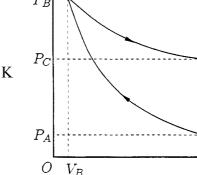
- a) $P'_{M} = 2, 3 \text{ kW}$
- b) $P'_M = 4,4 \text{ kW}$
- c) $P'_M = 7, 8 \text{ kW}$
- d) $P'_M = 5, 3 \text{ kW}$

Moteur \mathcal{M}

16. — Calculer le courant I' circulant dans la ligne.

- a) I' = 12.5 A
- b) I' = 53.4 A
- c) I' = 33.3 A
- d) I' = 22,2 A

17. — Une masse constante de gaz parfait, dont le rapport des capacités thermiques à pression et volume constants est $\gamma=1,4$ parcourt le cycle représenté sur le schéma de la figure ci-contre. Le gaz initialement dans l'état d'équilibre thermodynamique A caractérisé par une pression $P_A=10^5\,\mathrm{Pa}$, une température $T_A=144,4\,\mathrm{K}$ et un volume $V_A=4,14.10^{-4}\,\mathrm{m}^3$ subit une évolution isentropique qui l'amène à la température $T_B=278,8\,\mathrm{K}$.



 \overline{C}

Calculer la pression P_B du gaz dans ce nouvel état d'équilibre B.

a)
$$P_B = 10^6 \, \text{Pa}$$

b)
$$P_R = 5, 2.10^5 \text{ Pa}$$

c)
$$P_B = 12, 7.10^6 \text{ Pa}$$

d)
$$P_B = 3, 5.10^4 \text{ Pa}$$

18. — Calculer
$$V_B$$
.

a)
$$V_R = 3,7.10^{-3} \text{ m}^3$$

c)
$$V_R = 0.8.10^{-4} \text{ m}^3$$

b)
$$V_R = 1, 4.10^{-3} \text{ m}^3$$

d)
$$V_B = 2,3.10^{-5} \,\mathrm{m}^3$$

19. — Le gaz est mis en contact avec une source à la température T_B et subit une détente isotherme réversible qui ramène son volume à sa valeur initiale V_A .

Calculer la valeur P_C de la pression dans ce nouvel état d'équilibre C.

a)
$$P_C = 0.27.10^5 \text{ Pa}$$

b)
$$P_C = 1,72.10^4 \text{ Pa}$$

c)
$$P_C = 1,35.10^5 \text{ Pa}$$

d)
$$P_C = 1,93.10^5 \text{ Pa}$$

20. — Calculer la variation d'entropie ΔS_{BC} du gaz au cours de son évolution isotherme BC.

a)
$$\Delta S_{BC} = 3,42 \,\text{J.K}^{-1}$$

b)
$$\Delta S_{RC} = 0,471 \text{ J. K}^{-1}$$

c)
$$\Delta S_{BC} = -7.17 \,\text{J.K}^{-1}$$

d)
$$\Delta S_{BC} = 12,14 \text{ J. K}^{-1}$$

21. — Le gaz dans l'état d'équilibre C est alors mis en contact avec une source à la température T_A tandis que son volume est maintenu constant à la valeur V_A .

Calculer la variation d'entropie ΔS_{CA} du gaz au cours de cette évolution isochore.

a)
$$\Delta S_{C4} = 12,6 \,\mathrm{J.K^{-1}}$$

b)
$$\Delta S_{CA} = -15,3 \,\mathrm{J.K^{-1}}$$

c)
$$\Delta S_{CA} = 7.17 \,\text{J.K}^{-1}$$

d)
$$\Delta S_{CA} = -0.471 \,\text{J.K}^{-1}$$

22. — Calculer la quantité de chaleur \mathcal{Q}_{CA} échangée avec la source.

a)
$$Q_{CA} = -96,3 \text{ J}$$

b)
$$Q_{CA} = -12,6 \text{ J}$$

c)
$$Q_{CA} = -7,32 \text{ J}$$

d)
$$Q_{CA} = 12,9 \text{ J}$$

23. — En déduire la valeur S_{CA}^c de l'entropie créée au cours de l'évolution isochore.

a)
$$S_{CA}^c = 15, 2 \text{ J. K}^{-1}$$

b)
$$S_{CA}^c = -0.256 \,\mathrm{J.K^{-1}}$$

c)
$$S_{CA}^c = 0 \text{ J. K}^{-1}$$

d)
$$S_{CA}^c = 0.196 \,\mathrm{J.K^{-1}}$$

24. — On peut donc conclure que l'évolution est :

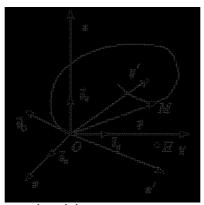
a) monotherme réversible

b) monotherme irréversible

c) isotherme irréversible

d) impossible

25. — Une particule chargée M de masse m et de charge q est lancée à l'origine O d'un repère d'espace $\mathcal{R}(Oxyz)$ avec une vitesse initiale \vec{v}_0 contenue dans le plan zOx: $\vec{v}_0 = v_{0x}\vec{e}_x + v_{0z}\vec{e}_z$. Cette particule est soumise à l'action d'un champ magnétique $\vec{B} = B\vec{e}_z$ uniforme et constant, dirigé suivant l'axe Oz et qui règne dans tout l'espace. On désigne par H la projection orthogonale de M sur le plan xOy.



On considère un second repère d'espace $\mathcal{R}'(Ox'y'z)$, de même origine O et de même axe Oz que \mathcal{R} . Ce repère est animé d'un mouvement de rotation autour de l'axe Oz avec une vitesse angulaire $\dot{\Omega} = \Omega \vec{e}_z$ constante.

On désigne par $ec{v}$ la vitesse de la particule dans $\mathcal R$. Donner l'expression de la force magnétique de Lorentz F_L qui s'exerce sur elle dans $\,\mathcal{R}\,$.

a)
$$\vec{F}_L = q\vec{B} \wedge \vec{v}$$

b)
$$\vec{F}_I = q\vec{v} \wedge \vec{B}$$

c)
$$\vec{F}_L = 2q\vec{v}_0 \wedge \vec{B}$$

d)
$$\vec{F}_L = -q\vec{v}_0 \wedge \vec{B}$$

26. — Exprimer la vitesse initiale \vec{v}_0' de la particule dans \mathcal{R}' .

a)
$$\vec{v}_0' = -\vec{v}_0$$

b)
$$\vec{v}_0' = \Omega \vec{v}_0$$

c)
$$\vec{v}_0' = \vec{0}$$

d)
$$\vec{v}_0' = \vec{v}_0$$

27. — On étudie le mouvement de la particule dans \mathcal{R}' . Montrer que la force d'inertie d'entraînement \vec{F}_{ie} peut

a)
$$\vec{F}_{ie} = m\Omega^2 \overrightarrow{HM}$$

a)
$$\vec{F}_{ie} = m\Omega^2 \overrightarrow{HM}$$
 b) $\vec{F}_{ie} = -m\Omega^2 \overrightarrow{HM}$ c) $\vec{F}_{ie} = -m\Omega^2 \overrightarrow{OH}$ d) $\vec{F}_{ie} = m\Omega^2 \overrightarrow{OH}$

c)
$$\vec{F}_{ie} = -m\Omega^2 \overrightarrow{OH}$$

d)
$$\vec{F}_{ie} = m\Omega^2 \overline{OH}$$

28. — On pose
$$\omega_c=qB/m$$
 et l'on impose que $\Omega=-\omega_c/2$.

On admettra que la force de Lorentz \vec{F}'_L qui s' exerce sur M dans \mathcal{R}' a la même valeur que dans $\mathcal{R}: \vec{F}'_L = \vec{F}_L$ et l'on négligera la force de pesanteur.

Calculer la force résultante \vec{F} qui s'exerce sur la particule.

a)
$$\vec{F} = -\frac{m\omega_c^2 \overline{OR}}{\Delta}$$

$$\vec{F} = -\frac{m\omega_c^2 \overline{ON}}{2}$$

c)
$$\vec{F} = -\frac{m\omega_c^2 OM}{4}$$

a)
$$\vec{F} = -\frac{m\omega_c^2 \overrightarrow{OH}}{4}$$
 b) $\vec{F} = -\frac{m\omega_c^2 \overrightarrow{OM}}{2}$ c) $\vec{F} = -\frac{m\omega_c^2 \overrightarrow{OM}}{4}$ d) $\vec{F} = \frac{m\omega_c^2 \overrightarrow{OH}}{2}$

29. — Déterminer la loi horaire x'(t) du mouvement suivant x'.

a)
$$x'(t) = \frac{v_{0x}}{\omega_c} \sin \omega_c t$$

b)
$$x'(t) = \frac{2v_{0x}}{\omega_c} \sin \frac{\omega_c}{2} t$$

c)
$$x'(t) = \frac{2v_{0x}}{\omega_c} \sin 2\omega_c t$$

d)
$$x'(t) = \frac{v_{0x}}{2}t^2$$

30. — Déterminer la loi horaire y'(t) du mouvement suivant y'.

a)
$$y'(t) = \frac{v_{0x}}{\omega_c} \sin \omega_c t$$

b)
$$y'(t) = \frac{2v_{0x}}{\omega_c} \sin \frac{\omega_c}{2} t$$

c)
$$y'(t) = 0$$

d)
$$y'(t) = \frac{v_{0x}}{2}t^2$$